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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE No. 1689 

LOAD DISTRIBUTIONS DUE TO STEADY ROLL AND PITCH 

FOR THIN WINGS AT SUPERSONIC SPEEDS 

By W. E. Moeckel and J. C. Eward 

SUMMARY 

A method is presented for determining the load distribution due 
to steady roll and pitch for thin flat-plate wings whose plan form 
is arbitrary except that a part of the leading edge must be supersonic. 

For wings with straight supersonic leading edges, the load 
distributions due to angle of attack, steady roll, and steady pitch 
are explicitly evaluated and are computed for a family of wings whose 
plan form includes most types of flow region commonly encountered. 
These computations showed that negative lift existed toward the rear 
of pointed wings whose aspect ratio was small. In steady roll, 
negative loading occurred in regions influenced by the edge of the 
plan form at the opposite side of the roll axis. When the pitch 
axis was located near the semichord position, the load gradient for 
steady pitch was approximately in the chordwise direction, except 
in regions influenced by subsonic trailing edges. High positive 
loading occurred toward the front of the wing and high negative 
loading toward the rear. 

INTRODUCTION 

A method is presented in reference 1 for determining the pressure 
distribution over thin wings at supersonic speeds. The method is 
based on an integration of the local source strength (which is 
proportional to the local slope of the wing surface) over the regions 
of the disturbed flow field that lie within the forward Mach cone 
from a point on the wing surface. Reference 1 shows that the 
contributions to the pressure coefficient of the disturbed fields 
off the surface of the wing may be replaced by equivalent contribu- 
tions of parts of the wing surface, and that some of the surface 
integrals that are involved in the determination of pressure coeffi- 
cient may be reduced to line integrals. 

The reduction of surface integrals to line integrals is feasible 
for all regions of a flat-plate wing except those influenced by 
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interacting disturbed flow fields off the wing plan boundary. Tor 
the wing shown in figure 1, for example, all regions may be treated 
by the methods of reference 1 except the small shaded regions at the 
rear. The restriction that a portion of the leading, edge must be 
swept ahead of the Mach lines from the foremost point of the wing 
thus guarantees that some portions of the wing will be subject to 
the methods of reference 1. For regions influenced by interacting 
disturbed flow fields, more elaborate methods are required, such as 
those used for delta wings in reference 2. 

The load distributions due to roll and pitch have been determined 
for some plan forms with straight edges in references 3 and 4. The 
methods of reference 1 are applied herein to the determination of 
these load distributions for more general classes of plan form, whose 
edges may be ourved. For a family of wings of the type shown in 
figure 1, but having, for convenience, straight supersonic leading 
edges, the load distributions due to angle of attack, steady roll, 
and steady pitch were computed. This type of wing was chosen 
because it contains most types of flow field commonly encountered. 

This analysis was completed at the HACA Cleveland laboratory 
during January 1948. 

SIMBOLS 

The following symbols, some of which are illustrated in fig- 
ure 2 to 6, are used throughout this report: 

A, B, Ci, 
substitution terms 

C2> • • •»  C10 

&> &%>  b>      integration limits 
b«, c, C 

C pressure coefficient 

k slope of straight leading edge in (u,v) coordinate 
system 

M Mach number 

p steady rate of roll, radians per second 

q steady rate of pitch, radians per second 
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area or area Integration 

area on wing surface 

free-stream Telocity (in x-dlrectlon) 

variables of Integration In oblique coordinates 

oblique coordinates of point on vlng surface 

oblique coordinates of vlng vertex 

functions defining form of right supersonic leading 
edge 

functions defining form of left supersonic leading 
edge 

functions defining form of right subsonio leading 
and trailing edges 

functions defining form of left subsonic leading 
and trailing edges 

v component of perturbation Telocity in z-dlrection 
(positiTe outward from z « 0 plane) 

x, y Cartesian coordinates of point on ving surface 

if  tj variables of integration in Cartesian coordinates 

T]Q coordinate of roll axis 

£Q coordinate of pitch axis 

a angle of attack 

ß «    Jj M2 - 1 

a  0^        v/a for top and bottom wing surface, respectively, 
In y * constant plane 

s* 
u 

U,   T 

Uy,     Tv 

*d> Td 

ui(v), 
7l(x) 

▼l(u), 

I2(T), 

72 (x) 
▼200* 

u3(v), 
73(x) 

▼3(u), 

ii(v), 
74(x) 

▼4(u), 
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ANALYSIS 

A plan form that contains most types of wing region commonly 
encountered is shown in figure 1. The downstream Mach lines from 
the vertex and from the junctures of the subsonic and supersonic 
sections of the leading edges divide the plan form into nine types of 
region that differ in the type and number of wing edges that affect 
the pressure distribution. Regions I and II are influenced only by 
supersonic leading edges, whereas regions III, IV, and V are affected 
also by one subsonic leading or trailing edge. In regions VI, VII, 
and VIII, the subsonic edges of both sides of the wing affect the 
flow. The shaded areas represent regions that are affected by 
interacting perturbed fields off the wing plan form and are not 
easily treated by the methods of reference 1. 

The essential equations required to determine the load distribu- 
tion for the type of wing shown in figure 1 (without the shaded 
regions) may be obtained from a consideration of regions of types III, 
IV, and V. For these types of region (influenced by supersonic 
leading edges and only one subsonic leading or trailing edge), an 
expression was derived in reference 1 for the pressure coefficient 
at a point (x,y) when that point is not influenced by vorticity off 
the wing plan-form boundary. This expression is (see fig. 2): 

rv^ 

2 
* 

^d|dn 
rv^ 

S*,! 

^(x-02 - ß2(y-ri)2 2^(x-e)2 - ß2(y-n)5 

Sw,2 

r- 

2 o^An 

__  ^(x-l)2 - ß2(y-n)J 

ab 

2 + r 
(Og +oT) dn 

JbOd 
2 l\|(x-£)2 - ß2(y-n): 

bd 

<ffl (qr " °»1 4" 
(i) 

♦ <g)J i(*-tf - »w 
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(si where [^~J     is the derivative of the equation defining the plan 

form of the subsonic leading and trailing edges evaluated at the 
intersection of the right forward Mach line from (x,y) and the vlng 
boundary (point d). Equation (l) vas shown in reference 1 to contain 
an additional term of a form similar to the line integral along the 
Mach line bd. This additional line integral is related to the 
vorticity behind the trailing edge and is therefore zero for leading 
edges. For trailing edges, the nature of the line integral depends 
on the conditions Imposed. In particular, if the Xhtta-Joukowski 
condition is imposed, the additional line Integral must be suoh that 
it exactly canoels the integral along the Mach line bd. Henoe, 
equation (l), without the last Integral, can be used to determine the 
pressure coefficient In regions influenced by vorticity off the plan 
form provided that the Ehtta-Joukowski condition is Imposed at 
subsonio trailing edges. The imposition of this condition, although 
arbitrary, is conventional and will be assumed in the rest of the 
analysis. 

Tor a flat-plate wing, the effective local slopes CB and Oy 
for determining the loading due to angle of attack, steady roll, and 
steady pitch, are 

aT 

aB -a 
(2) 

(2a) 

aT " " § " " § ^ " n<^ 

aB - £ Oi - no) 

aT " - § " - U ^ "  W 
(2b) 

where p and q are the rates of roll and pitoh, respectively, in 
radians per second, and T)Q and | Q are the distances from the 
origin of coordinates to the roll axis and the pitch axis, 
respectively. From equations (l) to (2b) the first, second, and 
fourth integrals of equation (l) are seen to vanish for the pressure 
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coefficient due to angle of attack and roll, whereas the second and 
fourth integrals vanish for the pressure coefficient due to pitch. 

It is convenient to convert the required integrals to an oblique 
coordinate system whose axes are the rearward Mach lines from the 
origin. The origin of the coordinates is taken at the juncture of 
the supersonic and subsonic parts of the leading edge. The conversion 
equations are (fig. 3) 

«-&<»- *> 2ß (I + ßn) 
CO 

OJ 

t-|(T+«) ±(v - U) 

M 
uw - fk<* - *> 

■ M^ + 
uw) 

vw= ü(x + ßy} 

(3) 

20 
The elementary area in this coordinate system is -JJ- dudv. The 

coordinates (uw, vw) or (x,y) are used to represent the point 
on the wing for which the pressure coefficient is desired, whereas 
(u v) or d,f\)    represent variables of integration. In the oblique 
coordinate system, the equations for the load distributions due to 
angle of attack, roll, and pitch become, respectively, (fig. 4) 

2&P « 
a * 

IS) 
i|(»Hr-u3 

rv w rb 

dv 

fv 
2 dv-du 

J 
^(uy-u)(vw-v) 

(4) 

P^O P 
2 

nMn0 
l^"w-u3 

TT« 
(v-U3-MT)o)dv 

/fv 

«Mno 

rb 

a 

(V-U-MTJQ) (dv-du) 

l|(uw-u)(vw-v) 

(4a) 
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'     Jb     » 
▼ -T YW 

f* (v+u-|So)(dv-du) 

H|(iVu)(yw"T) 

dudv 

vl^ 
Ub) 

)(VV-Y) 

where u3 and its derivatives are evaluated for v « vw. Equa- 
tions (4). (4a), and (4b) can be integrated for arbitrary forms   
of u3(vv), if u and v are linearly related along the line ah. 

In other words, if the supersonic part of the leading edge is a 
straight line, explicit expressions for the load distribution are 
readily obtainable for arbitrary forms of the subsonic leading and 
trailing edges. If the supersonic leading edge Is not a straight 
line, the load distributions due to angle of attack and roll may 
still be obtained by means of a simple graphical Integration along 
the required part 3b of the leading edge. The treatment of such 
wings to determine the lift distribution is described in detail in 
reference 5. This method may be readily extended to determine the 
line Integrals along ab for load distribution due to roll and pitch. 
The area integral required for the pitch loading (equation (4b)), 
although somewhat more difficult to evaluate than the line integrals, 
is also subject to stripwlse, graphical integration methods. 

The integrations from b to vw in equations (4) to (4b) 

(along the Mach line u = U3(TW)) are Independent of the form of 
the wing boundary and hence may always be explicitly integrated. 
If the Kutta-Joukoweki condition is imposed at the trailing edge, 
these integrals need be evaluated only when the right forward Mach 
line from (uw,vw) Intersects the plan-form boundary at a subsonic 
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leading edge ( 0 < «g-^ < 1). If the right forward Mach line inter- 

sects the plan-form boundary at a subsonic trailing edge \-^-> IJ, 

the integrals along u ■ u3(vw) vanish. 

The analysis may now be extended to regions of the wing 
influenced by all its subsonic leading and trailing edges. In general, 
suoh regions may be of two types (figs. 5(a) and 5(b)). In both types 
of region, the left forward Mach line from (uv,vw) intersects a 
subsonic leading or trailing edge at the opposite side of the wing. 
In figure 5(a), (u^v^) lies in a region of type 71 (fig. l), for 
which the reflections of the forward Mach lines at the wing boundaries 
do not intersect on the wing surface. In figure 5(b), (u^v,,) lies 
in a region of type YIII, for which the reflections of the forward 
Mach lines cross on the wing surface. For both types of region, the 
methods of referenoe 1 indicate that an additional line integral 
along the Mach line v - v^Uy) must be added to equation (4). These 

integrals are the same as those along u ■ u3(vw), except that T 

replaces u, and v4 replaces u3. The sense of the integration is 
again from the supersonic leading edge Y1   or v2 to the subsonic 
edge T4. The Integration along v - V4, like that along u » u3, 
vanishes (for solutions that satisfy the Eutta-Joukowski condition) 
if the forward Mach line from (u*,^) interseots a subsonic trailing 

edge (as it does, for example, in fig. 5(b)). 

Along the supersonic leading edge, the sense of the integration 
is from a to b for both types of region. The values of the line 
integrals along ab are thus of opposite sign for figures 5(a) and 5(b). 

The area integrations for the pitch loading (equation (4c)) extend 
over the shaded areas of figures 5(a) and 5(b). For the type of 
region shown In figure 5(b), the area integration consists of two 
parts. The integration over the downstream area is independent of 
the form of the supersonic leading edge. The integration over the 
upstream area depends on the contour of the supersonic leading edge. 
This integration is subtracted from the integration for the lower area, 
because two area cancelations are involved, one for each of the regions 
off the two subsonic leading edges (reference l). 

For regions of type VII (fig. l), both right and left reflected 
Mach lines intersect the plan-form boundary along the same supersonic 
leading edge. A point in this region is like a point in region Till 
if the Mach lines cross on the surface and is like a point In 
region VI if the Mach lines do not cross. 
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For regions of types I and II, both forward Mach lines intersect 
the plan-foxm boundary at supersonic leading edges. Hence, all of 
the line integrals except that along the supersonic leading edge 
vanish, and the limits for this integral are the points of intersec- 
tion of the forward Mach lines with the leading edge. The area 
integration for the pitch loading extends over the region bounded 
by the forward Mach lines and the leading edge. 

APPLICATION TO WINGS WITH STRAIGHT 

SUPERSONIC LEADING EDGES 

When the wing is symmetrical and a section of the leading edge 
on both sides of the line of symmetry is straight and swept ahead 
of the Mach lines from the vertex, the equations for the supersonic 

>-*> - i- leading edges are ux = - kv and u2 * -j^U-k) - p The origin of 

coordinates is taken at the Juncture of the supersonic and Bubsonic 
leading edges (fig. 6). The axis of symmetry is identified with the 
roll axis. For a general region on such a wing, line integrals are 
required along the Mach lines reflected from the subsonic leading 
edges and along the two sections of the supersonic leading edge. 
The limits for these line integrals, as well as those for the area 
integration required for pitch loading, vary with the type of region 
considered. The presentation is simplified if the expressions for 
a general region are first evaluated and the appropriate limits for 
each region are then indicated. 

In the following expressions for the load distributions due to 
angle of attack, steady roll, and steady pitch, respectively, the 
first integral is the line integral along v = v4(u), the second is 
the integral along u = u3(v), the third is along u - ^(v), and 

the fourth is along u = U2(v): 

I (&) 
dv, 

1 - 
4 

du 

fv 

A, 
du 

^3 
dv 

4*V^  ^[V^3 

r** 

c' 

dv 

^V^ 

1+k 
k 

du 

,,  Wd^-U) (vw+|) 

(1+k) 
du 

^(v^-u) [vw+ku-Mn0U-k)] 

(5) 
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"2" rin^Pi 
1 - 

du 

r»i 

^Tv"v4 

"w 

Jt 

(v4-u-M0o)du 

1 - 
dUj 

dv 

* °w-u3 

fX 

c1 

(T-u3-Mn0)dv 

^v 
J\> 

c 
(2Ä-»MT|0Jdu 

+ (l+k) 

j 

[u(l+k) + kMrjJdu 

^(uv-u) [vw+ku-MT|0(l-k)] 
(5a) 

dV4 

du 

^V^4 

*«v 
(v4+u-^£0)du 

5^3 
dv 

(™3-|e0)aT    1+k 

V Uy-Us 

rc 

4 Vir-V 

Jb 

(¥>♦!*>) du 

,   /fövuHvw^) 

rb 

(l+k) 
[u(l-k)4Mn0(l-k)-||0]du 

^(uy-u) [vw+ku-Mn0(l-k)] 

2S (5b) 



MCA TU No. 1689 11 

where 

S = 

T 

JJ 

dudv 

^ (»V-u) (vw-v) 

is the Integration over the required areas for each region. 

From these integrals, the following explicit expressions are 
obtained for the load distributions due to angle of attack, steady 
roll, and steady pitch, respectively: 

a P   « 

dv, 

du M «V -a vw-v4 
+ 1 - 

dUj 

dv 

vw-c' 

^uw"u3_ 

* Afk 
tan" 

Uy-U 

kvw+u 
tan 1 

kfuy-u) 

vw+ku-Mno(l
_k) 

(6) 
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The appropriate limits for each of the eight regions shown in 
figure 6 are given in the following table: 

to 

Wing regions (fig. 6) 
Limit 

I II III IV V VI VII VIII 

a »w «w *w % Uy 

v4 
k 

v4 
" k 

-kv4 

a' «w «w "w "w "w 
Min 

k 
v4 
k 

^(i-k) + 

v4 
k 

ud 

b "w ud *w ud u3 ud 
u3 u3 

b' "w ud *w ud u3 ud u3 -kv4 

c -kvw -kvw u3 u3 u3 u3 U3 ud 

c* vw *w -u3/k -u3/k -ku3 + 

MTi0(l-k) 

-u3/k -ku3 +. 

Mn0d-k) 1 
-ku3 + 

Mrj0(l-k) 

AQ examination of equations (6) to (6b) shows that the arc-tangent 
factors are the same for each type of load distribution. The square- 
root terms are also the same for the roll and pitch loadings. 
Application of the foregoing table to equations (6) to (6b) shows 
that many terms vanish for some of the wing regions because the upper 
and lower limits are identical. The location of these limits for 
regions of types VI and VIII are shown in figure 5. 

The expressions for S in each region are: 
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Region Area Integration, S 

I -A 2 A 

II (| " Cl) A + BC2 

III 2C3 + AC4 

IV 2C3 + A(C4 - Cj)  + BC2 

V 2C5 + BCg 

VI 2(C7 + C3) + A(C4 - C-L) + B(C2 - c8) 

VII 2(C7 + C5) + B(C6 - C8) 

VIII 2(C5 + C10) + A^ - C9) + B(Cg - c2) 

where 

A=__(Uv + kVw) 

B = -|r [kuv+vw-Mri0(l-k)] 

ci = tan   ^kTv^y 

Co = tan 
-1 >/

k(uvua) 
v„- w-vd 

CA = tan 
-*3_ 

+U7 

=   fc^) [vw+ku3-Mno(l-k)] 

Cc = tan 

Co = tan 

Co ss tan' 

■1,1       k(°y-u5) 
\ vw+ku3-Mtlo(l-k) 

_x Jki^+Vi-Mnod-^) 
vw"T4 

1 k(vv-v4) 

C10 = AJ (i^+k^) (vw-v4) 
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Equations (6) to (6b) have been used to calculate the load 
distributions due to lift, roll, and pitch for the wing shown in 
figure 7. For computation, use of the coordinates HW/MITIQI 

and VW/M|TJQ| rather than uw,vw was convenient. .These coordinates 

make equations 6 to 6(b) nondimensional. 

For the wing shown in figure 7, the ratio -r  was taken 

equal to 1.0. The value of k is l/3. The equations for the 
subsonic edges were assumed to be 

u3 

M|no| 

v4 

Vhol/ 

Wol " ' 
1 + 4_»    1 (7) 

Mhol       Wo 

In order to satisfy the Kutta-Joukowski condition, the integral 

along u = u3 is zero for VW/(M|T1Q|) > 12 ' ; and the integral 

along v = v4 is zero for uw/(M|n0|) > 1 + 12" ' , because 
du3     dv4 
-r-z-   and -3— are then greater than unity, dv      du 

The contour of the wing is represented in figure 7 for a Mach 
number of <f2, although in the (u,v) coordinate system the plot 
represents a series of wings whose spatial contours vary with Mach 
number according to equations (7) and the value k = l/3. Hence 
the load distributions calculated for this wing apply directly to, 
all wings of the series defined by k = l/3 and equations (7). The 
load distributions for a considerable variety of plan forms, at a 
given Mach number, can be obtained from the load distributions 
calculated for the wing of figure 7 by terminating the wing with any 
form of supersonic trailing edge. The load distributions for the 
remaining regions of the wing are unaffected by such changes. 

The effect of altering the location of the roll or pitch axes 
can be determined with the aid of the superposition principle. If 
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the roll and pitch axes are shifted to TJ1 and |-j_, respectively, 
then equations (2a) and (2b) "become, for roll, 

0T - - §(n-tio> - u(no'T1i) 

aB - §(n-n0) + Jfoo^i) (8) 

and, for pitch, 

aB §u-W+$<eo-ii> <*> 

Because §(no_Tll) and n^O'^1^ are conBtantB> the contributions 
to the load distributions due to these terms are exactly equivalent 
to the load distributions due to the corresponding angles of attack. 
Thus, if the load distributions are computed for the axes TJ0 

and %Q    (or for some relation such as ß|^o|/^0 = *> aB aBBUmed 

for the wing of fig. 7), the load distributions for roll or pitch 
about any other axes are simply the load distributions for the 
axes i)0 a*1«1 ^o Plus the llft distributions for the angles of 
attack: 

and 

a = ± *(n0-V 

a-±S(io-y 

For a family of wings whose contour is represented by the 
value k = l/3, and equation (7), the load distributions due to 
angle of attack, steady roll, and steady pitch are shown in fig- 
ures 8, 9, and 10, respectively. The dashed lines in these figures 
are Mach lines that separate the various regions indicated in 
figure 7. The additional Mach lines at i^AM^o!) = 1«29 and 

at vw/(M|n0|) =0-29 separate the regions influenced by the subsonic 
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trailing edges from those influenced only "by leading edges. The pres- 
sure coefficient is zero along the subsonic trailing edge for each 
type of loading, because the Kiitta-Joukowski condition was imposed 
in each case. Along each subsonic leading edge the pressure coeffi- 
cient is infinite. 

The lift distribution shows that positive lift exists on all 
parts of the wing surface except the extreme rearward tip (region VIII 
and part of region VII). This negative region is a result of the 
upwash over the subsonic edges. The lift decreases rapidly toward 
the subsonic edges. The region of the wing having the highest lift 
is that bounded by the leading edges and by the Mach lines from the 
beginning of the trailing edges. 

For steady roll (fig. 9), the loading is negative in the outboard 
part of region IV and in nearly all of regions V, VI, and VII. In 
region VIII, the loading again becomes positive. The large negative 
region results because the greatest contribution to the loading 
proceeds from the leading edge on the opposite side of the wing, 
where the vertical component of the perturbation velocity is of 
opposite sign. 

The load gradient for steady pitch (fig. 10) is primarily in 
the chordwise direction, except in the regions influenced largely by 
subsonic trailing edges. High positive loading occurs toward the 
front of the wing and high negative loading toward the rear. The 
loading becomes negative ahead of the pitch axis because the contribu- 
tion due to the area integration and the contribution due to the line 
integrals are of opposite sign ahead of the pitch axis (|0 > |). The 
loading therefore changes sign when the contribution of the integrals 
over the area included in the forward Mach cone is sufficiently 
large to overbalance the contribution due to the line integrals. 

SUMMARY OF THEOBY AND RESULTS 

A method has been presented for determining the load distribution 
due to steady roll and steady pitch on thin wings whose plan form is 
arbitrary except that a part of the leading edge must be supersonic. 
When the supersonic part of the leading edge is a straight line, 
these load distributions can be explicitly evaluated for all regions 
of the wing except those influenced by interacting flow fields off 
the plan form. 

For a particular family of wings having a plan form that 
includes most types of flow field commonly encountered, the load 
distributions due to angle of attack, steady roll, and steady pitch 
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were computed. The lift distribution for this family of wings 
showed that negative lift may exist toward the rear of pointed 
wings if the aspect ratio is small. The highest lift occurred in 
regions affected only by leading edges. In steady roll, negative 
loading occurred in regions influenced by the edge of the plan form 
at the opposite side of the roll axis. At the extreme rear of a 
low-aspect-ratio wing, the loading again became positive. With the 
pitch axis located near the semichord position, the load gradient 
for steady pitch was primarily in the chordwise direction except 
in regions influenced by subsonic trailing edges. High positive 
loading occurred toward the front of the wing and high negative 
loading toward the rear. 

Flight Propulsion Besearch Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, May 15, 1948. 
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Figure 1. - Types of wing region commonly encountered at super- 
sonic speeds. 
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Figure 2. - Illustration of geometric significance of equation (1). 
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Figure 3. - Relation between Cartesian and oblique coordinate systems. 
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Figure 4. - Illustration of geometric significance of equations (4). 

(a) Reflected forward Mach lines 
do not intersect on surface. 

(b) Reflected forward Mach lines 
intersect on surface. 

Figure 5. - Two types of wing region influenced by two subsonic edges. 
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Figure 6. - Geometric parameters for symmetrical wing with straight 
supersonic leading edges and arbitrary subsonic leading and trail- 
ing edges. 
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Figure 7. - Form of wing analyzed.  M =^S2. 
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Figure 8, - Lift distribution for series of wings defined by k = 1/3 and equations (7). 
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Figure  9. 
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Load  distribution  in steady roll for wing  defined by    k = 1/3    and equations   (7) 
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Figure 10. - Load distribution In steady pitch for wing defined by k = l/3 and equations (7). 


